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Numerical experiments on paper-fluid 
interaction -permeability of a three- 
dimensional anisotropic fibre network 

D. QI*,  T. UESAKA 
Pulp and Paper Research Institute of Canada, 570 St. John's Boulevard, Pointe Claire 
Quebec, Canada, H9R 3J9 

The effect of paper structure on f low characteristics of various fluids is one of the most 
important, fundamental problems in papermaking, coating, and printing. A computer code 
based on a cellular automaton model, in particular the lattice-gas Boltzmann model, has 
been developed to simulate f low numerically in a random fibre network. As a preliminary 
investigation, a numerical experiment has been conducted on the three-dimensional 
permeability of an interpenetrable fibre network. It was found that the in-plane permeability 
and the z-directional (thickness direction) permeability are very sensitive to the distribution 
of fibre segments in the z-direction. At a constant porosity, the z-directional permeability 
increases and the in-plane permeability decreases with increasing z-directional fibre 
orientation. 

1. Introduction 
Penetration, spreading and flow of fluids in a porous 
paper structure occur in almost all important pro- 
cesses of papermaking and in the end use. In wet 
pressing and drying processes, permeability of the wet 
web determines drainage resistance and drying effi- 
ciency [1, 2]. It is also well known that the drainage 
resistance affects the consolidation process of the sheet 
structure, determining non-uniformity of density in 
the thickness direction [3]. The penetration of coating 
colour into the sheet structure affects runnability of 
base stock on the coater, the coat structure, and thus 
final quality of coated paper. Ink spreading and pen- 
etration are other important examples of three-dimen- 
sional paper-fluid interactions controlling printability 
and print quality E4, 5]. 

Although considerable effort has been spent to 
understand the basic mechanism of paper structure- 
fluid interactions, many of the approaches are still 
phenomenological and are often of an empirical na- 
ture. This is because of the extreme difficulty in dir- 
ectly describing the complex random fibre network 
structure of paper. For example, the pore structure of 
paper is often represented by a group of cylindrical 
capillaries. The Hagen-Poiseuille equation is em- 
ployed to relate the flow rate and the pressure drop. 
To take into account the effects of the complex pore 
structure, various structural parameters are introduc- 
ed, such as porosity, tortuosity factor, shape factor, 
and hydrodynamic specific surface area. The 
Kozeny-Carman equation has been widely used to 
analyse results of permeability in terms of such struc- 
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tural parameters E6]. Relating these parameters to real 
paper structure, however, is not straightforward be- 
cause of the empirical nature of the model. In addition, 
the treatment is essentially one-dimensional so that 
the problem of direction-dependent flow, such as in- 
plane spreading and penetration in the thickness di- 
rection, cannot be treated within the framework of the 
empirical model. 

This paper describes an attempt to deal directly 
with the flow in the random fibre network structure 
without resorting to empirical models. The method is 
based on the cellular-automaton fluid model, in par- 
ticular the lattice-gas Boltzmann model, which was 
originally introduced by Frisch et al. [7, 8]. As an 
illustrative example, permeability parameters in the 
three directions are computed for different degrees of 
fibre orientation in the thickness direction of paper 
(the z-direction). The main objectives of this paper are, 
first to demonstrate the potential of the lattice-gas 
Boltzmann method for numerically modelling fluid 
flow in an anisotropic three-dimensional fibre net- 
work, and secondly to acquire basic knowledge of the 
effects of the microstructure on paper permeability. 

2. Background 
Various approaches have been taken to predict quant- 
itatively the permeability of random porous materials. 
Rigorous upper and lower bounds of permeability 
have been obtained by applying variational principles 
to the Stokes equation [9-13]. In the case of random 
anisotropic structures, such as paper sheets, this 
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method requires anisotropic pair distribution func- 
tions to be obtained, which, at this moment, cannot 
easily be obtained by either analytical or numerical 
methods. Less rigorous methods are the electrical re- 
sistor analogue approaches [14, 15]. The pore struc- 
ture is represented by the network of the conductance 
elements, and the conductance of each element is 
selected to represent flow characteristics of specific 
pore structures, such as the pore throat. The effective 
medium theory or Monte Carlo method has been used 
to calculate the overall conductance (or effective per- 
meability). Because this approach avoids solving 
the Navier-Stokes equations directly, it is again 
difficult to relate the flow characteristics to real paper 
structure. 

A direct approach to tackling this problem may be 
to use a finite element method or a finite difference 
method. The advantage of these methods is that there 
are a number of sophisticated commercial codes, in- 
cluding pre- and post-processors, available on the 
market. However, the grossly irregular, random struc- 
ture of paper may limit the range of numerical simula- 
tion to an unrealistically small structural element, 
depending on the computer capacity. 

The recent development of the cellular-automaton 
fluid models, and its extension to the three-dimen- 
sional lattice-gas Boltzmann model [16, 17], proposed 
by Chen et al. [18] in 1992, has provided a new 
computational scheme for fluid dynamics. This alter- 
native numerical method is a powerful tool to solve 
accurately the Navier-Stokes equations for complex 
geometrical systems, particularly for random porous 
media. (Because the lattice-gas models are still in the 
early stage of the development, there is no direct 
comparison between the finite element/difference 
methods and the lattice-gas methods). 

3. Cellular-automaton fluid models 
In the cellular-automaton fluid models [8], we con- 
sider a lattice containing moving particles. The "artifi- 
cial" particles randomly populate the lattice nodes 
and collide with each other according to a set of 
collision rules. The collision rules are derived so as to 
satisfy mass and momentum conservation at each 
node. (It should be noted that "particles" and their 
"movement" in the cellular-automaton models repres- 
ent neither real molecules nor molecular motion, in 
contrast to molecular dynamics models, but the mod- 
els essentially represent a "fictitious" micro-world). 
Using suitable restrictions of the crystallographic 
symmetry of the lattice and taking proper limits of 
micro-dynamical equations in time and space, one can 
show that the micro-dynamical equations are reduced 
to the incompressible Navie~Stokes equations (mac- 
ro-dynamical equations) as a special case. In other 
words, one can simulate fluid dynamical phenomena 
by using the discrete lattice-gas model without directly 
solving the Navier-Stokes equations. In spite of the 
simple collision rules, the models can exhibit rich 
macroscopic complexity, such as turbulence. The 
simple microscopic rules have a special advantage, 
that is, the basic algorithm becomes very simple and is 
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particularly suited for massively-parallel computing. 
Another advantage is that irregular boundary condi- 
tions can be easily handled. This feature is especially 
important in the simulation of fluid flow in random 
porous media. 

The model used in this study is the lattice-gas 
Bolzmann model [17] using the face-centred hyper- 
cubic lattice to deal with the three-dimensional fluid 
[8, 16]. The general outline of the lattice-gas models 
can be found elsewhere [7, 19]. 

4. Numerical experiments 
4.1. Simulation of flow in a pipe 
Permeability is defined by the Darcy law 

U - K V p  (1) 
pv 

where U is a velocity vector, K is a second-order 
permeability tensor, v is the kinematic viscosity, p is 
the density of the fluid and P is pressure. If a Cartesian 
coordinate system is chosen to coincide with the prin- 
cipal directions of the fibre network, three principal 
components of the permeability tensor, Kx, Ky and 
Kz correspond to permeability in the machine direc- 
tion, in the cross machine direction, and in the thick- 
ness direction, respectively. Darcy's law is valid only 
when the Reynolds number, Re, is small enough that 
the viscous force dominates the inertial force. There- 
fore, the flow rates used for the simulation should be 
limited to the range where Darcy's law holds [19]. 
(Recently, the case of higher Reynolds number has 
been successfully dealt with by this model [20].) 

In order to check the validity of the simulation 
model and the Fortran code, we have applied this 
model to the well-known Poiseuille flow in a pipe 
where an analytical solution is available. The square 
cross-section of the pipe consists of 19 • 19 unit cells: 
In this simulation, all units are natural units, i.e. the 
units of time, mass, and length are taken as 1. The 
average particle density is 8.175, the kinematic viscos- 
ity is 0.15. No-slip boundary conditions are imposed, 
i.e. whenever particles hit the solid nodes, they are 
reflected back into the fluid along the opposite direc- 
tion. The pressure gradient is created by increasing the 
populations of particles proportionally to the "body 
force" in the x-direction at each automaton step. Peri- 
odic boundary conditions are applied along the x- 
direction and no-slip boundary conditions are applied 
on the surface of the pipe. After about 1000 time steps, 
the system reached an equilibrium state, and the flow 
rate Q, was calculated from 

Q = ~ Vdydz (2) 

where V is the velocity of fluid, and the mean flow rate 
U can be obtained from U = Q/H z, where H is the 
width of the pipe. Results were compared with the 
analytical solution of the Poisson equation with 
Dirichret boundary conditions at the pipe wall [-21]. 

0.035H2F 
V - (3) 

V 

In this equation, F is the body force applied to create 
the pressure gradient. Table I shows comparisons of 



TABLE I Comparisons between numerical results and analytical 
solutions obtained from Equation (natural unit) 

Mean velocity Mean velocity Error (%) 
Body force, F (analytical) (numerical) 

0.001 1800 0.099 40 0.099 48 0.080 48 
0.000 5090 0.042 87 0.042 91 0.093 31 
0.000 2545 0.021 44 0.021 45 0.004 66 

the numerical results with the analytical solutions for 
different values of the body force applied. Within the 
range tested, the mean velocity obtained from the 
simulation was proportional to the body force, as 
expected from the analytical solution, and the errors 
were within 0.1%. 

4.2. S i m u l a t i o n  of  f l o w  in a r a n d o m  f ibre 
ne two rk  

For  the simulation of flow through the fibre network, 
it is necessary to have information about the three- 
dimensional fibre network structure. Currently, only 
limited quantitative data of paper structure are avail- 
able in the literature [22]. Therefore, in this paper we 
will construct a configuration retaining the basic 
structural features of the fibre network, i.e. random- 
ness and anisotropy. The model of "fully penetrable" 
cylinders with randomly placed axes has been em- 
ployed by Tsai and Strieder [23] and Torquato and 
Beasley [-24] in the studies of isotropic fibrous media. 
In this paper we modify their model to construct an 
anisotropic, fully penetrable fibre network. The pro- 
cedure of constructing the fibre network is as follows. 
First, the simulation box of 100 g m x  100 g m x  
100 g m is divided into a lattice of 36 x 36 x 36 with the 
unit length 2.7778 gm as shown in Fig. la. Then, the 
centre of a fibre with rectangular cross-section is ran- 
domly located at a node with the coordinates 
(Xo, Yo, Zo) shown in Fig. lb. The fibre (the broken 

lines in Fig. lb) initially lies in the plane parallel to the 
x - y plane with the long side parallel to the x-axis. 
The fibre is then rotated through an angle ~ around 
the z-axis, as indicated by the dashed line, sub- 
sequently rotated through a z-directional polar angle, 
0. In this simulation, the angle d~ is uniformly and 
randomly distributed between 0 ~ and 180 ~ to con- 
struct a fibre network isotropic in the x - y  plane, 
modelling handsheets. The polar angle, 0, is also as- 
sumed to be randomly and uniformly distributed 
between 0 = - co and 0 = + co. All the fibres inter- 
sect the wall of a simulation box (no fibre-end effect). 
The total number of the fibres is controlled by a 
porosity. 

The width and thickness of the fibre are about 
11.1 gm (4 lattices) and 6.94 gm (2.5 lattices). The basis 
weight of the sheets is 45.6 gm -2. The integers 0 and 
1 are used to denote the void nodes and solid (fibre) 
nodes. To guarantee that the lattice Boltzmann equa- 
tion is a faithful picture of the Navier-Stokes equa- 
tions at low frequency and long-wavelength limits, we 
need to keep the size of the narrowest pore larger than 
four lattice units [21]. Therefore, any pore whose size 
is equal to or less than 3 units (8.33 gm) was artificially 
filled with solid nodes through a computer program. 
This limit of the resolution of the simulation can be 
improved by increasing the computer capacity, as will 
be discussed later. To model how the z-directional 
fibre orientation affects the transverse and in-plane 
permeabilities, we set co = 0 ~ 4.5 ~ 9 ~ 13.5 ~ and 27 ~ 
with a constant porosity of 0.706, for all five cases. The 
maximum polar angle, co, larger than 27 ~ may be 
rarely found in real paper [25]. A three-dimensional 
picture of the random fibre network structure con- 
structed for the case of co = 13.5 ~ is shown Fig. 2. 

The average density of particles and kinematic vis- 
cosity expressed in the natural unit are the same as 
those used for the Poiseuille flow examined earlier. To 
relate the dimensionless variables in the simulation to 
real physical quantities, the density of air, 1.2 kg m -  3, 
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Figure l(a) The simulation box. The simulation box was divided into 36 unit boxes. The sub-unit box contains 8 unit boxes. (b) Construction 
of fibre network. The initial position of a fibre is indicated by the broken lines, qb the angle between the x-axis and the normal projection of the 
fibre axis on to the x-y plane. 0, the angle between the fibre axis and the projected line on the x ~  plane. 
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Figure 3 The relationship between mean  velocity and pressure 
gradient for air flow in the x-direction (~o = 9~ 

Figure 2 The interpenetrabie three-dimensional  fibre network 
(co = 13.5 ~ and porosi ty  of 0.706). 

and its kinematic viscosity, 1.5 x 10 -5 m2s 1, are as- 
sumed. After dimensional analysis, we took 36 m s-  1 
as the unit of velocity, 0.07716 x 10 .6  s as the unit of 
time and 3.1462 x 10-18 kg as the unit of mass. 

5. Permeability of the three-dimensional 
Fibre Network 

Fig. 3 shows the mean velocity of air plotted against 
the pressure drop in the x-direction. The mean velo- 
city is proportional to the pressure drop, indicating 
.that the Darcy law holds within the pressure range 
tested. Fig. 4 shows the velocity field in the x - y  plane 
at z = 26 when the pressure gradient, 336 k P a m - 1 ,  is 
applied in the x-direction. The arrows represent the 
two-dimensional projection of the three-dimensional 
velocity vectors, and the hatched areas represent the 
section of the fibre network. Fig. 5 shows the velocity 
field in the y - z  plane at x = 10 for the same numerical 
experiment. As expected, in Fig. 4 there is a systematic 
drift of air flow along the x direction, in which the 
pressure gradient is imposed, while in Fig. 5 there is no 
systematic drift in the section of the y - z  plane. In 
Fig. 4 and 5, the velocity vector fields do not seem to 
reflect sensitively geometrical details of the solid (fibre) 
surface. The most of the flow seems to occur in rela- 
tively larger pores. Rothman observed in the simula- 
tion of flow through a two-dimensional porous 
medium that the majority of the flow follows just a few 
winding paths, while many areas are relatively stag- 
nant [19-]. This suggests that small pores and intersti- 
ces do not proportionately contribute to permeability 
of the fibre network. 

In Fig. 6, the transverse permeability, Kz, and the 
in-plane permeability, Kx, are plotted as functions of 
the maximum polar angle, co, where the three-dimen- 
sional fibre orientation angle varies randomly between 
- co and co. With increasing three-dimensional fibre 

orientation, the transverse permeability increases and 
the in-plane permeability decreases. Both permeabilities 
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Figure 4 The velocity field in the x-y section at z = 26 (c0 = 13.5~ 
The section of the fibres is represented by hatched lines. 
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Figure 5 The velocity field in the y-z section at x = 10 (co = 13.5~ 
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Figure 6 (ll) Transverse permeability, Kz, and (4,) in-plane per- 
meability, Kx, as a function of the polar angle of fibre segments. 
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plane permeability and the z-directional permeability 
are very sensitive to the orientation of fibre segments 
in the z-direction. At a constant porosity, the z-direc- 
tional permeability increases and the in-plane per- 
meability decreases with increasing the z-directional 
fibre orientation. This explains why the permeability 
varies considerably among different papers even at the 
same porosity, a typical question of papermakers. 

Although the preliminary results presented in this 
paper showed the potential of the lattice-gas model for 
the simulation of various flow problems in porous 
media, some limitations of this method should be 
discussed. This work was conducted using a general- 
purpose workstation (HP 9000). The size of the simu- 
lation box was only 36 x 36 x 36. Therefore, the rest 
olution is not sufficient for detecting finer-scale flow; 
the flow through small pores of size less than 8 gm 
could not be detected. (This limitation may not be 
critical by considering the simulation results that fluid 
flow is not sensitive to smaller pores and interstices 
existing in the structure.) Another problem of the 
small simulation box is that there is a possible effect of 
boundary conditions. In particular, the type of the 
boundary condition used, such as solid-wall or peri- 
odic boundary conditions, could affect the calculated 
results of permeability. In addition, the small simula- 
tion box cannot contain a statistically representative 
number of fibres so that it is difficult to calculate 
effective properties, such as permeability, with suffi- 
cient statistical confidence. To overcome this diffi- 
culty, it would be most appropriate to use specialized, 
massively parallel, computers, as are currently being 
developed in some institutions [20]. 

Figure 7 The ratio of Kx to K~ as a function of the polar angle of 
fibre segments. 

show a dramatic change in the range of the maximum 
polar angle between 0 ~ and 10 ~ It should be noted 
that the porosity was kept constant in this stimulation. 
Fig. 7 shows the ratio of K~ to Ks as a function of the 
polar angle. It is interesting to observe that permeabil- 
ity anisotropy is dramatically reduced with a relatively 
small increase of orientation of fibre segments in the 
z-direction. It is, therefore, clear that a correct descrip- 
tion of the anisotropic permeability should include the 
three-dimensional fibre orientation. 

Polat et al. experimentally determined air permeab- 
ility in the z-direction (K~) [i] .  They found that 
K~ was 9.43 x 10-l 3 m 2 for handsheets of basis weight 
25 gm -2 and porosity 0.684, and 2.62 x 10 -13 m 2 for 
handsheets of basis weight 50 gm -2 and porosity 
0.643. These results are remarkably comparable to the 
simulation results showing that K~ = 8.95 x 10-x3 m e 
(co --- 4.5 ~ and 5.9 x 10-13 m 2 (~o --- 0 ~ for the network 
of basis weight 45.6 gm -2 and porosity 0.706. 

6. Conclusion 
It was demonstrated that the lattice-gas Boltzmann 
model can be used to model successfully the paper 
structure-fluid interactions. We found that the in- 
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